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Abstract

After constructing some elasticity models, a set of close three-dimensional linear analytical solutions, taking account
of all of the normal stresses, shear stresses and satisfying all the equations of equilibrium, the mid-plane clamped
boundary conditions and interfacial continuity conditions through-thickness, are presented for axially symmetrical
homogeneous isotropic circular plates, laminates and sandwich plates under uniform transverse load by using the
variable-separating method and formulating a set of displacement functions. Reasonability of the present solutions is
demonstrated comparing with FEM analysis, “pb-2 Ritz” theory analysis and experimental results of sandwich plates.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Notableness for high ratio of performance/weight and designable performance, and increasing utiliza-
tion of composite plates in various branches of engineering, has led to increasing research activities in
mechanical characteristics, structural modeling. Two-dimensional theory literature related to composite
plates is abundant. However, these theories based on Kirchhoff’s assumptions have often neglected effects
of shear stresses and normal stress o, which is inadequate in accurately estimating for mid-plates and thick
plates.

Timoshenko and Goodier (1970) presented a set of three-dimensional solutions for axially symmetrical
homogeneous isotropic circular plates in “Theory of Elasticity’:
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The solutions cannot satisfy some displacement boundary conditions, and it is evident that the stress o, at
the mid-surface vanishes.

A high-order theory of plate deformation, supposing the three-dimensional displacement field is a linear
combination of thickness co-ordinate, was proposed by Lo et al. (1977) and shown to yield very accurate
results, especially when the ratio of length-thickness is larger than 4, it is in aggreement with accurately
elastic mechanical solutions. However, complex and expensive computation impedes wide application of
LCW high-order theory. Noting this restriction of the traditional plate and shell theories, Reddy (1984)
proposed a simplified higher-order theory, assuming the thickness to be incompressible, with very accurate
for displacements and normal stresses but not for shear stresses.

Liew (1992) have introduced “pb-2” functions which is combination of a shape function and a
polynomial function into the plate theory of Reddy (1984) for predicting the deflections, bending mo-
ments, buckling loads, and vibration frequencies of plates. The method has been shown to be compu-
tationally efficient and numerically accurate for the analysis of plates with complex geometry and
arbitrary support conditions. However, it still belongs to two-dimensional theory and is difficult to satisfy
stress boundary conditions. Assuming that the strains in plane are functions of the thickness co-ordinate,
z and the strains out plane independent on z, Liew (1994, 1995), Liew and Yang (1999, 2000) have made
free vibration analysis of clamped circular laminates, thick plates and annular plates using “pb-2 Ritz”
method, and have demonstrated to be accurate comparing with theory solutions published and FEA
analysis.

A sandwich plate generally comprises two faceplates and a flat plate made up of a relatively-thick core
with low density material, and different from laminate. There exist a vast theoretical and numeric analysis
literature, such as deflection and buckling model for sandwich plates presented by Wang (1995a,b), non-
linear vibration for circular sandwich plates studied by Du and Li (2000). Frostig et al. (1992) proposed a
high-order buckling theory for sandwich beams, Barut et al. (2001) made analysis of thick sandwich
construction by a {3,2}-order theory, but Roberts et al. (1998) demonstrated poor agreement between
theoretical, FEA results and experimental results.

In this paper we formulate the elastic solutions for axially symmetrical composite circular plates
including single layer, laminate and sandwich plates under transverse uniform static loading. The aim of the
present work is to provide a benchmark for approximate solutions. The theoretical analysis is organized as
follows: first, an exact analysis of axially symmetrical homogeneous isotropic circular plates is attempted
and the close three-dimensional linear solutions are obtained by separating the variables; then by adopting
the functions of homogeneous isotropic circular plates, analysis for axially symmetrical sandwich and
laminated plates subjected to the boundary conditions and the interfacial continuity conditions is at-
tempted.

The laminate considered herein is made of layers of homogeneous isotropic materials with similar
properties, and clamped on the edge of mid-plane. The transverse stresses and the displacements are as-
sumed continuous through the laminate thickness.

In the present paper, the sandwich plate, clamped on the edges of the mid-planes of the face plates,
consists of two or three different homogeneous isotropic materials elastically bonded together, with large
differences of density and modulus between the face plates and the core. The transverse stresses are assumed
continuous through the thickness, but the displacements continuous through the thickness only at the
center.

To verify the present solutions, “pb-2 Ritz”” models for single layer and laminate under uniform static
loading are set up in Section 3, and experiment of sandwich plates presented in Section 4. Subsequently, the
present theoretical calculation results are compared with numerical, “pb-2 Ritz” theoretical and experi-
mental results.
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2. Theoretical analysis
2.1. Three-dimensional analytical formulation for axially symmetrical homogeneous isotropic circular plates

The axially symmetrical homogeneous isotropic circular plate under uniform transverse load as shown in
Fig. 1 is made of an isotropic material with Young’s modulus £ and Poisson’s ratio v. U, ¥ and W stand for
the displacements in the radial, circumferential, and axial directions, respectively.

The following non-dimensional parameters are introduced:

The deformations are symmetrical about z-axis, thus the stresses and the strains are independent of 6 and
T9=T0=0, v=0
While neglecting the gravity, we obtain the three-dimensional equations of equilibrium for the plate in
the form
e u
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where a comma denotes partial differentiation with respect to the suffix variable (the followings are the
same), and
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Fig. 1. Geometry of a circular plate under uniform transverse load.
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The boundary conditions of uniform transverse pressure applied at the surface are

z=h, 1,=0, 6.=0

z=—h, 1,=0, 0,=—¢q
r=0, u=w,=0
h
40
:1 ,.ZdZ:——
r /T .

z=0, r=1, u=w=w,=0

Because of the symmetry of the construction, the boundary conditions with respect to the z-axis, the
deformations are also symmetrical, i.€., Wz = W(_xyz), Uxyz) = —U(—xyz) iN an orthogonal coordinate
system where the z axis coincides with the center. This means that u is an odd function and w an even
function with respect to the coordinate x. While the coordinate r coincides with the coordinate x in the
positive direction, W o) = W(.2), U(x0z) = U(rz), SO # is an odd function and w an even function with respect
to the coordinate ». Let us now take

u=ar+ar 2)
w = b() +b2l"2 + b4r4

Substituting Eq. (2) in Eq. (1), we have

1 - | 1
<16a3 Y oyt al,zz) 4 (41;4,2 4 am) P =0

1—2v 1—2v 1 =2y
1 1—v 1 1—v 1—v
2ai,——+4 2by. ——— 4a;, ——+ 1 2bs . - 24 9 4 _
al,zl — 2V+ bZ + bO,zz1 — 2V+ ( a3<zl — 2V+ 6b4 + bz"zzl — 2v>7’ + b4’zzl — 2vl”
then
b4,zz =0
the o tay =0
ooy T BET
1 1—v
203, ——— — =
ey gy 8 b, =0
1—v 1
16a3 m + 2bZ.zm +a. = 0
1 1—v
al,zm + 2b2 + bonzzm = 0
taking account of the boundary conditions, we can get
u=cyrz’ m + coszr + coar — deozi®
3(1 —v) ‘)
8(1+v 1 1—2v 8cyvz2r?
w= —cz' 351 — g — cp32 20 —v) — cpZ’ =y + Cosz + 107 5 + cpr? + cor* + cos
where
1 -2 1
Cy = 3%%, Copp = —200, Coz = —32C0h2m =+ 400, Coqg = O’
64(1 — 2v)h?
Cos = —Co—————>5—, Cos = Cp

3(1—v)?



J.Z. Luo et al. | International Journal of Solids and Structures 41 (2004) 3689-3706 3693

Substituting Eq. (3) in the geometric equations and the equations of the stresses-strains relations, we will
obtain solutions of the stresses

2+vz 3B3+v)rz 3z 8h? v
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The last two of Eq. (4) coincide with the ones presented by Timoshenko and Goodier, however, the third
and fourth terms in the expression of ¢, are different. From Eq. (4) we can find:

qoV
2(1 —v)

Ty =

0, =09g=— for z=0

It should be noted that the value of 2‘{‘:) is a constant throughout the body and not a small quantity
comparing with the other terms, provided a thick plate is loaded.
While the plate is thin enough, i.e., z — 0, it is easy to see from Eq. (3) that w is of identical formula with

the two-dimensional solution of Timoshenko and Woinowsky (1959).

2 3(1 — Vz)
128ER?

w=gqo(l — r2)

2.2. Three-dimensional analytical formulation for sandwich axially symmetrical isotropic circular plates

For convenience, we use suffix ‘t’, ‘c’, ‘b’ to denote the top, the core and the bottom plates.

The sandwich axially symmetrical circular plate under uniform transverse loading is as shown in Fig. 2.
Each phase is made of isotropic material with Young’s modulus E; and Poisson’s ratio v;,. U;, V; and W;
respectively stand for the displacements in the radial, circumferential, and axial directions. Because the
deformations are symmetrical about z-axis, the stresses and the strains are independent of 0, we have

Troi = Tz00 = O; v; =0 (l =t.c, b)

The following non-dimensional parameters are introduced

A ]
0 Core o—=R 2H, : 2H
V Bottom

Fig. 2. Geometry of a sandwich plate under uniform transverse load.
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When neglecting the gravity, the three-dimensional equations of equilibrium, geometric equations and

stresses—strains relations are similar to the ones for the axially symmetrical homogeneous isotropic circular
plate, then, for each layer, the displacement solutions are

16(2 —v;
U = Cilz H + CiaZr + Cioar — 4z
’ _ (5)
8(1 + v ~ 1 L1 =2y _ 8covizir?
wi = — Ciofﬁ - Ci0322m — cioZ’ =, + CiosZ + 10_ v + cpr” + cior* + cioe
where
h+nh
- Z O ifz>hy
z=4z if |z| <ho
h+hy .
+ —; 0 lf Z< — ho

The boundary conditions are

zZ= ha Tra(t) = 07 Oz(t) = 0
z= _h7 Trz(b) = 07

}’:O, ui:W,"r:O

Oz(b) = —4o0

h+h
= +()7r:17 ut:Wt:Wt.rZO
2 y
z=0, u=we=w,, =0
h+h
zZ=— —;0,1":17 ub:wb:wb,:0

h
90
:1 2 = — —
r , /_hr dz 7

and interfacial continuity conditions are

z=ho, O = 0:c); Trz(t) = Tr=(c)
z=hy, r=0, w=w,u =u
z=—hy, Oxb) = 0Oxc), Tiz(b) = Trz(c)

z=—hy, r=0

y Wb = We, Up = Uc
For the sake of simplicity, assuming

z=hy, 0.=—q
z= _hOa 0; = —(qi
Substituting the displacement functions in the boundary conditions we obtain
For the top face plate
1 —v? o 1
Dgpm 0= —2con),  Csp = —32eowh” 7 "
64(1 — 2v )i}

Cs5t) = _CO(t)Wa Co(t) = Co(t)
— Wt

Cot) = 3

+deony  capy =0,
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For the bottom face plate

1—v?
=3(q0 — q1) =2 =-2
Co(b) (g0 —q1) 128Eh® C2(b) €o(b),
- 1 64(1 — 2vy)1?

c35) = —32¢om)h’ +acow)  cap) =0, csr) = —cop) (7'3)2 Co(b) = Corb)

1 - Vb 3(1 — Vb)
where
- h—h
h =
2

Employment in the constitutive equations of the face plates results in

z= hO) Trz(t) = 0

z= _h07 Trz(b) = 0

r=1,

et [z = By (0B, ComEy 2 2 h—h
| tedzt | wmdz=g (- h)’( T T + ((2e210 + €30) Ee + (2c2) + €3)) Ev) (7 — o)
: }

Since the constants of the top and the bottom face plates are linear functions of ¢, go — ¢1, respectively, the
displacement w; at the center can be expressed in a simple form as

we=0, xq», wp =01 * (q0—q1)

Fulfillment the core plate of the boundary and interfacial continuity conditions, the constants of the core
can be obtained

3(1=vo)(q1 — q2)

OO = TT8ER

o — (5 +v)ho(q2 — q1) + 8Ec(1 — ve)(Qag2 + Q190 — Q1q1)
2 3220, E,

oo 5= 120+ v )ho(q1 — ¢2) — 8Ec(1 — ve)(02q2 + Q190 — Q141)
3 16/20.E.

o — (02g2 — O190 + O191)Ec(1 — ve) + ho(g1 + ¢2)(1 — 20)
M 4hoEcve

S O2q> — Q190 + O1q1
5(c) 2]’!0

Co(c) = —Co(c) — C2(c)

Further
Caie) = —2C0(c) (6)

From the constitutive relations, we get

o 8 o
r=1, / 1,,dz = —hé o) + (2c5) + ¢3() ) Echo
—hg 3 1— Ve

It is easy to see that ¢;) and as r =1, f,:; 1,.dz, f:: " 1,,dz, ff(;lo 1,.dz are linear functions of ¢, g1, ¢», SO
simple forms can be got
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h
r = 1, / TerZ =A16]0 +A2ql +A3Q2, (7)
—h

Ca(¢) + 2¢oe) = Biqo + B2g1 + Big» (8)
Substituting Egs. (7) and (8) into the equations of boundary conditions and Eq. (6), we have
 2BiAs — (24, + 1)B;
U= "3(Byds — A3By)
_ 2B14; — (24, + 1)B,
©= 2(ByA43 — A3B3)

q0

90
When the sandwich plate is symmetrical construction with respect to the mid-plane, gy ~ q; + ¢>.
2.3. Three-dimensional analytical formulation for multilayered axially symmetrical isotropic circular plates

As shown in Fig. 3, the laminate is axially symmetrical plate under uniform transverse load with
(2N + 1) layers, total thickness 2H. The ith layer (i =0,1,2,...,n) is made of material with Young’s
moduli £;, Poison’s ratio v; and thickness 2H;. The mid-plane of the Oth layer coincides with the global mid-
surface. U;, V; and W; respectively stand for the displacements in the radial, circumferential, and axial
directions. The same non-dimensional parameters as above are introduced.

While neglecting the gravity, the three-dimension equations of equilibrium, geometric equations and
stresses-strains relations are similar to the ones for the axially symmetrical homogeneous isotropic circular
plate, then, for each layer, the displacement solutions are the similar to Eq. (5), just replacing the z with z.
Then the boundary conditions are

Z= h7 Trz(N) = 07 Oz(N) = 0
zZ= _h> Trz(-N) = 07 Oz(-N) = —90

r=0, w=w,=0

h
qo0
:1 rzid:__
r s [hf() z 7

z=0,r=1, uy=wi=w;,=0

and the interfacial continuity conditions

z=—hy+ ZZhn” { Oz(i) = Oz(i+1),Trz(i)) = Trz(i+1)

g Ui = UGir1),Wi = W(it1)

i 0>8Ho
<) =

2H
U J

Fig. 3. Geometry of a laminate under uniform transverse load.
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From the continuity conditions of the displacements, it is easy to see that all of the constants cq(;) through
the thickness are the same one. Now take

Coi) = Co

From the boundary conditions we have
ca0) =0, 0 = —2¢o, ¢cs0) = Co

To satisfy the continuity of the displacement w at layer interfaces, we must have

i O
CZ(i):CZ(i):—zco—&‘o;(l_vk 1—Uk_ >< ho+z2h>

m=0

Vanishing of the transverse shear stresses on the top and bottom and fulfilling of the continuity conditions
result in

32¢
C3N) = 1 — ‘())N ]’l — 262(1\/)
C3(i) = C3(—i)
. 2
32¢oE; 1 - 32¢ i
= 2 m 2 i i - - 2 m -2 i
5 = (h Z b |+ 2C2041) + C3341) v, h m;:/ h €200)

To satisfy the continuity of the displacements at layer interfaces and the boundary conditions of the stress
0., we have

Ca(n) = —C4(-i)

i—1
—v 2—v
—C()( ho—i—i 2h> (1_‘: k+1)+(03(k)_c3k+1 < ho+§ 2hm>

par 1 — v

1 —2v [ 32k 2VN
C5(N) =y <3 (=) + c3wyn + 2oy T C4(N)

1 — 2Vi Ei+1 32 i+1 i+1
Cs(i) = Tvl E - 3(1——V1+1 ( Z 20y | — (e3ir1) + 22641)) | 7 — m;] 2hy,
2vi41 1 - Vz+1 32 L
Sl A S Y S h — 2h,,
T Doy, S Ty, O | TRy D

m=N
i+1
2v;
+ (e30) + 220 (h Z2h ) 2y, 40

m=N

1 —2vw [ 32k 2vy 90
N = _mh 4 2c-mh — -
SN =T, <3(1 Ty e T T e T gy
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As a result of simplicity, cs; and cs_y) can be expressed in a compact form as

csi = Ciyeo
1—2v
C5(-N) = DCO — 1= v: %
then
1-2 1
Co = i @

a 1—VN END—C(,N)

To satisfy the continuity of the displacement w at layer interfaces, we have also

m=0

1

. 4 . 2
8 =l L+v 14+v il 1
0 3C°<Zmo Fin h°> (l—v,- l—v,-1> | 22— o (2(1v,-)c3(’> 2(T— v 20

1— 2V,‘ 1 - 2\1,',1 i1
i — i 2h,, — h 1) — Csi .
+ T—v, C2(i) | Cy( 1)> + (mz_% 0 (65( 1 C5()) + Co(i1)

Now all of the boundary and continuity conditions are satisfied. For laminate with layers made of same
material, the displacement solutions (5) are of identical formula with Eq. (3) for the axially symmetrical

homogeneous isotropic circular plate.

3. “pb-2 Ritz” theory

The models of “pb-2 Ritz” theory found in publications are unfit for three-dimensional static analysis

for thick circular plates, a new “pb-2 Ritz” model for thick circular plates is set up.

3.1. Single layer plates

Based on the “pb-2 Ritz” theory by Liew et al. (1998), the field of displacement is expressed as

4Z3 aW()

It is easy to see that the clamped boundary conditions » = 1, u = w = 0 have been satisfied.
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The strain energy due to bending can be expressed as
1
v=l! / (6} D{e}dV
2y

The potential energy of the load distributed over the plate surface is

W = /wqodS
s

In accordance with Ritz method the total energy function can be obtained
nH=uv-w
and the coefficients ¢/, are determined by minimizing the total energy function, i.e.

ol
- =0, a=ud,w
oci,

3.2. Laminates

Based on the “pb-2 Ritz” theory by Liew (1994), the transverse deflection is expressed as
w= Zciv(l - r2)2r2i
i=0

It is obvious that the clamped boundary conditions » = 1,u = w = 0 have been satisfied.
Following the step in Section 3.1, the coefficients ¢/, can be obtained. Wherein the stiffness coefficients D
is determined as

] 2+l k 3 -1 3
D=3 ZDk <h0+22hm> - <h0+22hm>
m=0

m=0

where D, is the matrix of bending stiffness coefficients of the kth ply.

4. Experimental models and device

To verify the analysis, experiment is conducted for sandwich plates under uniform transverse load. The
strains on both the surfaces and the displacement w at the top surface are tested. The models with the main
dimensions presented in Table 1 are shown in Fig. 4. The faceplates are made of the same composite
material with £ = 5.6 GPa and v = 0.15. The core is made of rubber with v = 0.47 and Young’s modulus £
expressed as

sample I : E = (2.90 + 25.00gy) MPa, sample II: E = (6.40 + 30.00g,) MPa

Twelve bidirectional strain gauges are glued to the top and bottom surfaces, as indicated in Fig. 5.

Table 1

The main dimensions of samples
Sample no. Structure R (mm) 2H (mm) 2H, (mm)
I Sandwich 100 45 41

11 100 55 41
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N
il
Hil

N

Fig. 4. Geometry of a sandwich plate.

e
2

Fig. 5. The location of strain gauges (mm).

The experimental device comprises two parts: supporting structure and pressurizer, as shown in Fig. 6.
The supporting structure consists of platen, sealer and pedestal. When one sample is placed between the
annular packing and the annular platen, the annular platen, sample and annular packing are pressed
against the pedestal by the bolts. Out-of-plane uniform pressure is supplied by the pressurizer.

1.Annular platen

2.Simple
3.Annular packing
4.Pedestal

7
/ 526 5.Pressurizer

6Manometer

7.Lead nozzle
8.Bolt

Fig. 6. Experimental device.
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5. Calculation and analysis
5.1. Homogeneous plates

Tables 2 and 3 present the calculating results of the present theory (TH), “pb-2 Ritz”, Ansys (ANS) and
Timoshenko and Goodier (1970) three-dimensional theory (TG) for a homogeneous plate with radial
a = 100 mm, thickness 2H = 20 mm, and the same material as the faceplates of the samples, under uniform
transverse load gy = 0.12 MPa. The element Solid45 is employed in the Ansys model.

From Table 2, it can be observed that the results of the present theory, “pb-2 Ritz”” and Ansys are very
close to each other except near the boundary, however, “pb-2 Ritz” theory cannot provide values of the
transverse normal strain. From Table 3, it can be shown that the results of the in-plane stress o, of the
present theory are closer to Ansys than “pb-2 Ritz”. It is further shown that there exists obvious difference
between the results of Timonshenko-Goodier theory (1970) and of the present theory, “pb-2 Ritz” and
Ansys.

Numerical data given in Table 4 are the maximum deflections w of three homogeneous plates with the
same material as mentioned above and different ratios of radius to thickness by the present theory, Ansys
and “pb-2 Ritz” theory. It shows that the results of the present theory, Ansys and “pb-2 Ritz” theory are

Table 2
Single layer, z = A, distributions of the strains and deflection w
R (mm) 0 25 50 75 100
&
TH 183 145 36 —-149 —405
ANS 170 131 34 -104 -252
Pb-2 Ritz 203 166 50 -137 —548
&0
TH 183 170 134 72 12
ANS 170 152 120 58 8
Pb-2 Ritz 203 190 153 90 0
&z
TH —44 =35 -9 33 94
ANS —43 -31 -8 30 78
Pb-2 Ritz - - - - -
w x 10? (mm)
TH 5.18 4.28 2.76 0.99 0.00
ANS 5.02 4.43 291 1.11 0
Pb-2-Ritz 5.81 5.14 3.40 1.28 0
Table 3
Single layer, z = A, distribution of the stress
R (mm) 0 20 40 60 80 100
o, (MPa)
TH 1.21 1.07 0.64 —-0.07 -1.06 -2.33
ANS 1.23 0.99 0.65 0.03 —-0.83 -2.35
Pb-2 Ritz 1.41 1.26 0.82 0.03 -1.02 -3.24

TG -0.01 -0.15 -0.58 -1.29 -2.28 -3.56
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Table 4
Single layer, z = h, R = 0, the deflection w
a/H 40 20 10 7
w x 10> (mm)
TH 331.8 41.47 5.18 1.78
ANS 310.8 37.16 5.02 1.75
Pb-2 Ritz 328.2 42.12 5.81 2.24
Table 5
Sandwich plate the experimental, present theoretical and Ansys’s results of strains
qo (MPa) 0.02 0.12
R (mm) 0 15 30 60 85 95 0 15 30 60 85 95
Sample I
&
z=h
EX 335 351 289 20 —488 —617 1431 1633 1609 728  —-1920 2796
TH 359 327 251 -29 —429 -623 1375 1250 962 -110  -1637  -2381
=—h
EX -299 -300 246 -67 200 693 -816 -824 744 -100 1181 3305
TH -367 -334 -257 29 437 637 —-1402 -1275 -981 113 1671 2428
o
z=h
EX 319 299 279 209 75 —294 1412 1394 1283 926 278  -1376
TH 359 346 323 230 97 32 1375 1333 1287 879 371 123
Z=—h
EX —338 -320 -280 -214 —49 —24 -925 -922 -927 -950 -394 -224
TH =367 =356 -330 =235 -99 =33 -1402 -1360 -1261 -897 —-388 —-124
Sample 11
&
z=h
EX 108 98 68 7 =75 -105 585 534 374 38 -395 =571
TH 107 97 74 -9 -129 —-187 614 557 428 —54 =721  -1095
ANS 76 64 45 -10 =75 -106 438 376 182 =54 —452 —642
Z=—h
EX -119 -120 =74 -9 106 164 —682 -672 -407 =21 637 972
TH -120 -102 -83 10 144 210 —669 —608 —466 59 807 1172
ANS =70 -82 =75 -3 118 182 -346 -436 —412 =26 642 998
&9
z=h
EX 102 98 88 64 33 =30 553 335 479 350 172 -166
TH 107 103 96 68 27 10 614 594 552 391 164 48
ANS 70 68 63 44 18 6 408 399 371 260 110 36
Z=—h
EX -113 -115 -107 -80 —41 -13 -627 —651 -620 —476 -242 —65
TH -119 -116 -107 =76 =32 -10 —-669 —648 -601 —426 =177 =55
ANS =77 -80 =79 —61 =30 -13 —-398 —422 —418  —4326 -163 —64

very close and when the ratio of radius to thickness decreases to 10, the results of the present theory is closer
to Ansys.
Hence, it can be concluded that the theory of homogeneous plates is reliable and new.
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5.2. Sandwich plates

Numerical data given in Tables 5 and 6 are the results of the experiment (EX), the present sandwich
theory and Ansys for the sandwich plates shown in Table 1.Taking into account the ratio of the core
thickness to the total thickness, Shell91 and Solid45 are employed for sample I and sample II respectively.

Table 6
Sandwich plate z = & the experimental, present theoretical and Ansys’s results of displacement w
qo (MPa) 0.02 0.12
R (mm) 16 25 40 55 60 75 80 95 16 25 40 55 60 75 80 95
w x 10> (mm)
Sample 1
EX 68 - 56 - 34 - 9 2 266 - 217 - 141 - 40 2
TH 84 73 36 9 2 322 242 141 44 11
ANS 103 89 68 38 10 358 308 235 132 35
Sample I1
EX - 6.8 58 43 1.8 - 03 - 38.1 320 232 - 120 - 4.0
TH 6.6 54 35 1.5 0.3 38.1 31.0 21.1 8.7 1.3
NS 4.8 3.8 26 1.0 0.1 282 221 153 5.0 0.3
Table 7
Sample II R = 0 gy = 0.02 MPa the present theoretical and Ansys’s results of stresses
Z (mm) -27.5 =22 -20.5 -11 =55 0 5.5 11 20.5 22 27.5
o, (MPa)

TH -0.794 0.448 0.790 —-0.011 -0.010 -0.008 -0.007 -0.005 -0.711 -0.403 0.705
ANS  -0.507 0.332 0.314 -0.010 —-0.009 —-0.008 —-0.008 —-0.008 -0.233 —-0.264 0.440

[} (MPa)
TH —-0.794 0.448 0.790 -0.011 -0.010 —-0.008 -0.007 -0.005 -0.711 —-0.403 0.705
ANS  -0.507 0.332 0.314 -0.010 -0.009 —-0.008 -0.008 -0.008 -0.233 —-0.264 0.440

0. (MPa)
TH -0.020 -0.012  -0.011 —-0.011 -0.010 -0.010  -0.009 -0.008 —0.008  -0.007 0.000
ANS -0.017 -0.020 -0.016 -0.014 -0.014 -0.013 -0.012  —0.011 -0.009  —-0.003  —0.003

Table 8
Sandwich plate z = & the present theoretical and Ansys’s results of displacement w
R (mm) 0 20 40 60 80 100
wx 107 (mm)
o =100
TH 20.2 18.7 14.3 8.30 2.60 0.00
ANS 18.0 17.3 15.0 11.4 6.32 0.00
o =216
TH 43.0 39.6 30.4 17.6 5.58 0.00
ANS 38.1 36.5 31.9 24.2 13.5 0.00
o= 1080
TH 189 175 134 78 25 0

ANS 187 180 157 119 67.3 0
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From the data in Tables 5 and 6, it can be seen that the results of the present theory are closer to the
experiment than Ansys. The displacement values of the present theory are between Ansys and experiment.
For the distribution of the displacement and the strains, the present theory are in agreement with the
experiment: the maximum of normal strain ¢, exists on the boundary, of normal strain ¢, exists at the center
of the circular plate; the displacement distributions in the #-direction are all in cosine type but Shell91, their
maximums exist at the center.

The data given in Table 7 are the present theoretical, Ansys’s reaults of stresses. It is clear that the
stresses in the core are almost zero due to its moduli very small in comparison with the faceplates. Similar to
the difference between exact solutions and a {3,2}-order theory by Barut et al. (2001), difference between
the results of the present theory and Ansys exists.

The deflection w distributions of the theory are compared with Ansys for sandwich plates with the same
structure as sample I and different «, the ratio of Young’s modulus of the faceplates and the core, as shown

Table 9
Laminate z = —h the present theoretical and Ansys’s results of the strains and deflection w “pb—2 Ritz” theoretical results of the
deflection w
R (mm) 0 20 40 60 80 100
&
TH -174 —-153 -87.4 -21.5 174 370
ANS —-168 —-140 -84.4 12.6 146 330
&g
TH -174 -167 —-146 -109 -58.3 6.94
ANS -154 —-148 —143 -98.7 —63.1 -3.76
&
TH 51.1 46.0 30.6 4.96 -30.9 =71.0
ANS 47.3 41.4 33.9 3.00 -22.6 -22.5
w x 10> (mm)
TH 6.03 5.56 4.26 2.48 0.80 0.03
ANS 6.29 5.83 4.52 2.71 0.94 0.00
Pb-2 Ritz 6.04 5.57 4.27 2.48 0.78 0.00
Table 10
Laminate R = 50 mm the present theoretical and Ansys’s results of the strains
z (mm) =75 —4.5 -1.5 1.5 4.5 7.5
&
TH —47.5 -27.3 —-8.83 8.82 27.3 47.5
ANS —48.3 -28.7 -9.06 8.93 29.2 45.0
&y
TH —-132 -78.1 -25.8 25.8 78.1 132
ANS —-118 -73.0 -233 27.5 75.5 116
&z
TH 21.2 9.16 -0.1 -11.0 -19.7 -31.7
ANS 21.5 9.68 -1.35 -11.0 -20.1 -29.9
VVZ
TH 0.00 -39.6 —64.3 -64.9 -39.6 0.00

ANS -17.6 -37.5 -59.6 -58.8 -38.4 -19.1
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Table 11
Laminate z = A, gy = 0.12 MPa the deflections w
R (mm) 0 20 40 60 80 100
wx 102 (mm)
a=13
TH 6.0 5.5 4.2 2.5 0.8 0.0
ANS 6.2 5.8 4.5 2.7 0.9 0.0
“pb-2 Ritz” 6.0 5.6 4.3 2.5 0.8 0
=20
TH 6.1 5.6 4.3 2.5 0.8 0.0
ANS 6.5 6.0 4.7 2.8 1.0 0.0
“pb-2 Ritz” 6.1 5.6 4.2 2.5 0.8 0.0
o=28.0
TH 6.2 5.7 44 2.5 0.8 0.0
ANS 8.1 7.6 6.0 3.8 1.4 0.0
“pb-2 Ritz” 6.2 5.7 44 2.5 0.8 0.0

in Table 8. It is clear that the maximums of deflection w of the theory coincides with Ansys nicely, but with
the increasing of «, the difference near the boundary increases. The w of Ansys are in parabola type, but of
the present theory in cosine type. It is evident that this reflects a discrepancy between three-dimensional
analysis and two-dimensional analysis. Hence, we can arrive at a conclusion that the trend is reasonable.

5.3. Laminates

The laminate under uniform transverse load gy = 0.12 MPa consists of three layers of the same thickness
2H; = 5 mm and radius @ = 100 mm including two faceplates with £ = 1.08 x 10* MPa, v = 0.15 and a
middle layer with £ = 1.00 x 10* MPa, v = 0.17. The results of the present theory, “pb-2 Ritz”” and Ansys
are shown in Tables 9 and 10. Solid45 element of Ansys is used for calculation. From these tables, it is clear
that the present theory, “pb-2 Ritz”” and Ansys are close to each other.

For different ratio of modulus of the faceplates and the middle, The deflection w of the present theory,
Ansys and “pb-2 Ritz” theory for laminates with the total thickness 2H = 20 mm, radius R = 100 mm and
three plies of same thickness are shown in Table 11. Solid45 element is used for Ansys calculation.

From Table 11, it can be seen that with the ratio increasing the discrepancy between the theories and
Ansys increases, but the present theory and “pb-2 Ritz” theory are in agreement with each other.

6. Conclusions

The paper presents specifically the solutions for axially symmetrical homogeneous isotropic circular
plates, laminate plates and sandwich plates under transverse load. The solutions including all of normal
stresses and shear stresses satisfy all the equations of equilibrium, the mid-plane clamped boundary con-
ditions and the interfacial continuity conditions through-thickness. Comparing with experimental, Ansys’s
and “pb-2 Ritz” theoretical results, it can be concluded as follows:

1. The solution for homogeneous plates are different from the solution by Timoshenko and Goodier (1970),
it is a new three-dimensional theoretical solution.
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2. Within a scope of ratio of radius to thickness, the clamped boundary conditions can be accurately
simplified as the mid-plane clamped boundary conditions, the present solution for single layer plate is
precise solution for axially symmetrical homogeneous isotropic circular plates under uniform transverse
load with clamped boundary.

3. The present sandwich theory is in agreement with the experiment, so it can be used for estimating the
distribution of strains and stresses of the faceplate.

4. The present laminate theory agrees with “pb-2 Ritz” theory, and within a scope of ratio of radius to
thickness, is in agreement with Ansys, thus the clamped boundary conditions can be accurately simplified
as the mid-plane clamped boundary conditions.
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