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Abstract

After constructing some elasticity models, a set of close three-dimensional linear analytical solutions, taking account

of all of the normal stresses, shear stresses and satisfying all the equations of equilibrium, the mid-plane clamped

boundary conditions and interfacial continuity conditions through-thickness, are presented for axially symmetrical

homogeneous isotropic circular plates, laminates and sandwich plates under uniform transverse load by using the

variable-separating method and formulating a set of displacement functions. Reasonability of the present solutions is

demonstrated comparing with FEM analysis, ‘‘pb-2 Ritz’’ theory analysis and experimental results of sandwich plates.

� 2004 Elsevier Ltd. All rights reserved.

Keywords: Isotropic; Sandwich plates; Laminates; Three-dimensional linear analysis; Clamped boundary
1. Introduction

Notableness for high ratio of performance/weight and designable performance, and increasing utiliza-

tion of composite plates in various branches of engineering, has led to increasing research activities in

mechanical characteristics, structural modeling. Two-dimensional theory literature related to composite

plates is abundant. However, these theories based on Kirchhoff’s assumptions have often neglected effects

of shear stresses and normal stress rz, which is inadequate in accurately estimating for mid-plates and thick

plates.

Timoshenko and Goodier (1970) presented a set of three-dimensional solutions for axially symmetrical
homogeneous isotropic circular plates in ‘‘Theory of Elasticity’’:
* Co

E-m

0020-7

doi:10.
rr ¼ q0
2þ m
8

z3

h3

�
� 3ð3þ mÞ

32

r2z
h3

� 3

8

z
h

�
; rz ¼ q0

�
� z3

4h3
þ 3

4

z
h
� 1

2

�
; srz ¼ � 3q0r

8h3
ðh2 � z2Þ
rresponding author. Tel./fax: +86-278-674-9806.

ail address: snow9316@21cn.com (J.Z. Luo).

683/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

1016/j.ijsolstr.2004.02.029

mail to: snow9316@21cn.com


3690 J.Z. Luo et al. / International Journal of Solids and Structures 41 (2004) 3689–3706
The solutions cannot satisfy some displacement boundary conditions, and it is evident that the stress rr at

the mid-surface vanishes.

A high-order theory of plate deformation, supposing the three-dimensional displacement field is a linear

combination of thickness co-ordinate, was proposed by Lo et al. (1977) and shown to yield very accurate
results, especially when the ratio of length-thickness is larger than 4, it is in aggreement with accurately

elastic mechanical solutions. However, complex and expensive computation impedes wide application of

LCW high-order theory. Noting this restriction of the traditional plate and shell theories, Reddy (1984)

proposed a simplified higher-order theory, assuming the thickness to be incompressible, with very accurate

for displacements and normal stresses but not for shear stresses.

Liew (1992) have introduced ‘‘pb-2’’ functions which is combination of a shape function and a

polynomial function into the plate theory of Reddy (1984) for predicting the deflections, bending mo-

ments, buckling loads, and vibration frequencies of plates. The method has been shown to be compu-
tationally efficient and numerically accurate for the analysis of plates with complex geometry and

arbitrary support conditions. However, it still belongs to two-dimensional theory and is difficult to satisfy

stress boundary conditions. Assuming that the strains in plane are functions of the thickness co-ordinate,

z and the strains out plane independent on z, Liew (1994, 1995), Liew and Yang (1999, 2000) have made

free vibration analysis of clamped circular laminates, thick plates and annular plates using ‘‘pb-2 Ritz’’

method, and have demonstrated to be accurate comparing with theory solutions published and FEA

analysis.

A sandwich plate generally comprises two faceplates and a flat plate made up of a relatively-thick core
with low density material, and different from laminate. There exist a vast theoretical and numeric analysis

literature, such as deflection and buckling model for sandwich plates presented by Wang (1995a,b), non-

linear vibration for circular sandwich plates studied by Du and Li (2000). Frostig et al. (1992) proposed a

high-order buckling theory for sandwich beams, Barut et al. (2001) made analysis of thick sandwich

construction by a f3; 2g-order theory, but Roberts et al. (1998) demonstrated poor agreement between

theoretical, FEA results and experimental results.

In this paper we formulate the elastic solutions for axially symmetrical composite circular plates

including single layer, laminate and sandwich plates under transverse uniform static loading. The aim of the
present work is to provide a benchmark for approximate solutions. The theoretical analysis is organized as

follows: first, an exact analysis of axially symmetrical homogeneous isotropic circular plates is attempted

and the close three-dimensional linear solutions are obtained by separating the variables; then by adopting

the functions of homogeneous isotropic circular plates, analysis for axially symmetrical sandwich and

laminated plates subjected to the boundary conditions and the interfacial continuity conditions is at-

tempted.

The laminate considered herein is made of layers of homogeneous isotropic materials with similar

properties, and clamped on the edge of mid-plane. The transverse stresses and the displacements are as-
sumed continuous through the laminate thickness.

In the present paper, the sandwich plate, clamped on the edges of the mid-planes of the face plates,

consists of two or three different homogeneous isotropic materials elastically bonded together, with large

differences of density and modulus between the face plates and the core. The transverse stresses are assumed

continuous through the thickness, but the displacements continuous through the thickness only at the

center.

To verify the present solutions, ‘‘pb-2 Ritz’’ models for single layer and laminate under uniform static

loading are set up in Section 3, and experiment of sandwich plates presented in Section 4. Subsequently, the
present theoretical calculation results are compared with numerical, ‘‘pb-2 Ritz’’ theoretical and experi-

mental results.
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2. Theoretical analysis

2.1. Three-dimensional analytical formulation for axially symmetrical homogeneous isotropic circular plates

The axially symmetrical homogeneous isotropic circular plate under uniform transverse load as shown in

Fig. 1 is made of an isotropic material with Young’s modulus E and Poisson’s ratio m. U , V and W stand for

the displacements in the radial, circumferential, and axial directions, respectively.

The following non-dimensional parameters are introduced:
r ¼ R
a
; z ¼ Z

a
; u ¼ U

a
; v ¼ V

a
; w ¼ W

a
; h ¼ H

a

The deformations are symmetrical about z-axis, thus the stresses and the strains are independent of h and
srh ¼ szh ¼ 0; v ¼ 0
While neglecting the gravity, we obtain the three-dimensional equations of equilibrium for the plate in

the form
e;r
1� 2m

þr2u� u
r2

¼ 0

e;z
1� 2m

þr2w ¼ 0

8<
: ð1Þ
where a comma denotes partial differentiation with respect to the suffix variable (the followings are the

same), and
r2 ¼ o2
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þ 1
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Fig. 1. Geometry of a circular plate under uniform transverse load.
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The boundary conditions of uniform transverse pressure applied at the surface are
z ¼ h; srz ¼ 0; rz ¼ 0

z ¼ �h; srz ¼ 0; rz ¼ �q0
r ¼ 0; u ¼ w;r ¼ 0

r ¼ 1;

Z h

�h
srz dz ¼ � q0

2

z ¼ 0; r ¼ 1; u ¼ w ¼ w;r ¼ 0
Because of the symmetry of the construction, the boundary conditions with respect to the z-axis, the
deformations are also symmetrical, i.e., wðx;y;zÞ ¼ wð�x;y;zÞ, uðx;y;zÞ ¼ �uð�x;y;zÞ in an orthogonal coordinate
system where the z axis coincides with the center. This means that u is an odd function and w an even

function with respect to the coordinate x. While the coordinate r coincides with the coordinate x in the

positive direction, wðx;0;zÞ ¼ wðr;zÞ, uðx;0;zÞ ¼ uðr;zÞ, so u is an odd function and w an even function with respect

to the coordinate r. Let us now take
u ¼ a1r þ a3r3

w ¼ b0 þ b2r2 þ b4r4



ð2Þ
Substituting Eq. (2) in Eq. (1), we have
16a3
1� m
1� 2m

�
þ 2b2;z

1

1� 2m
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�
r þ 4b4;z

1
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�
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1� 2m
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1� 2m

þ 4a3;z
1

1� 2m

�
þ 16b4 þ 2b2;zz

1� m
1� 2m

�
r2 þ 2b4;zz

1� m
1� 2m

r4 ¼ 0
then
b4;zz ¼ 0

4b4;z
1

1� 2m
þ a3;zz ¼ 0

2a3;z
1

1� 2m
þ 8b4 þ b2;zz

1� m
1� 2m

¼ 0

16a3
1� m
1� 2m

þ 2b2;z
1

1� 2m
þ a1;zz ¼ 0

a1;z
1

1� 2m
þ 2b2 þ b0;zz

1� m
1� 2m

¼ 0
taking account of the boundary conditions, we can get
u ¼ c0rz3
16ð2� mÞ
3ð1� mÞ þ c03zr þ c04r � 4c0zr3

w ¼ � c0z4
8ð1þ mÞ
3ð1� mÞ � c03z2

1

2ð1� mÞ � c02z2
1� 2m
1� m

þ c05zþ
8c0vz2r2

1� v
þ c2r2 þ c0r4 þ c06

ð3Þ
where
c0 ¼ 3q0
ð1� m2Þ
128Eh3

; c02 ¼ �2c0; c03 ¼ �32c0h2
1

1� m
þ 4c0; c04 ¼ 0;

c05 ¼ �c0
64ð1� 2mÞh3

3ð1� mÞ2
; c06 ¼ c0
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Substituting Eq. (3) in the geometric equations and the equations of the stresses-strains relations, we will

obtain solutions of the stresses
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The last two of Eq. (4) coincide with the ones presented by Timoshenko and Goodier, however, the third

and fourth terms in the expression of rr are different. From Eq. (4) we can find:
rr ¼ rh ¼ � q0m
2ð1� mÞ for z ¼ 0
It should be noted that the value of q0m
2ð1�mÞ is a constant throughout the body and not a small quantity

comparing with the other terms, provided a thick plate is loaded.

While the plate is thin enough, i.e., z ! 0, it is easy to see from Eq. (3) that w is of identical formula with

the two-dimensional solution of Timoshenko and Woinowsky (1959).
w ¼ q0ð1� r2Þ2 3ð1� m2Þ
128Eh3
2.2. Three-dimensional analytical formulation for sandwich axially symmetrical isotropic circular plates

For convenience, we use suffix ‘t’, ‘c’, ‘b’ to denote the top, the core and the bottom plates.

The sandwich axially symmetrical circular plate under uniform transverse loading is as shown in Fig. 2.

Each phase is made of isotropic material with Young’s modulus Ei and Poisson’s ratio mi. Ui, Vi and Wi

respectively stand for the displacements in the radial, circumferential, and axial directions. Because the

deformations are symmetrical about z-axis, the stresses and the strains are independent of h, we have
srhi ¼ szhi ¼ 0; vi ¼ 0 ði ¼ t; c; bÞ

The following non-dimensional parameters are introduced
r ¼ R
a
; z ¼ Z

a
; ui ¼

Ui

a
; wi ¼

Wi

a
; h ¼ H

a
; h0 ¼

H0

a

a

θ

R 2H

Z

0q

02H

Top

Core

Bottom
0 0

Fig. 2. Geometry of a sandwich plate under uniform transverse load.
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When neglecting the gravity, the three-dimensional equations of equilibrium, geometric equations and

stresses–strains relations are similar to the ones for the axially symmetrical homogeneous isotropic circular

plate, then, for each layer, the displacement solutions are
ui ¼ ci0r�z3
16ð2� miÞ
3ð1� miÞ

þ ci03�zr þ ci04r � 4ci0�zr3

wi ¼ � ci0�z4
8ð1þ miÞ
3ð1� miÞ

� ci03�z2
1

2ð1� miÞ
� ci02�z2

1� 2mi
1� mi

þ ci05�zþ
8ci0mi�z2r2

1� mi
þ ci2r2 þ ci0r4 þ ci06

ð5Þ
where
�z ¼
z� hþ h0

2
if zP h0

z if jzj6 h0

zþ hþ h0
2

if z6 � h0

8>>><
>>>:
The boundary conditions are
z ¼ h; srzðtÞ ¼ 0; rzðtÞ ¼ 0

z ¼ �h; srzðbÞ ¼ 0; rzðbÞ ¼ �q0
r ¼ 0; ui ¼ wi;r ¼ 0

z ¼ hþ h0
2

; r ¼ 1; ut ¼ wt ¼ wt;r ¼ 0

z ¼ 0; uc ¼ wc ¼ wc;r ¼ 0

z ¼ � hþ h0
2

; r ¼ 1; ub ¼ wb ¼ wb;r ¼ 0

r ¼ 1;

Z h

�h
srz dz ¼ � q0

2

and interfacial continuity conditions are
z ¼ h0; rzðtÞ ¼ rzðcÞ; srzðtÞ ¼ srzðcÞ
z ¼ h0; r ¼ 0; wt ¼ wc; ut ¼ uc
z ¼ �h0; rzðbÞ ¼ rzðcÞ; srzðbÞ ¼ srzðcÞ
z ¼ �h0; r ¼ 0; wb ¼ wc; ub ¼ uc
For the sake of simplicity, assuming
z ¼ h0; rz ¼ �q2
z ¼ �h0; rz ¼ �q1
Substituting the displacement functions in the boundary conditions we obtain

For the top face plate
c0ðtÞ ¼ 3q2
1� m2t
128Et

�h3
; c2ðtÞ ¼ �2c0ðtÞ; c3ðtÞ ¼ �32c0ðtÞ�h2

1

1� mt
þ 4c0ðtÞ c4ðtÞ ¼ 0;

c5ðtÞ ¼ �c0ðtÞ
64ð1� 2mtÞ�h3

3ð1� mtÞ2
; c6ðtÞ ¼ c0ðtÞ
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For the bottom face plate
c0ðbÞ ¼ 3ðq0 � q1Þ
1� m2b
128Eb

�h3
; c2ðbÞ ¼ �2c0ðbÞ;

c3ðbÞ ¼ �32c0ðbÞ�h2
1

1� mb
þ 4c0ðbÞ c4ðbÞ ¼ 0; c5ðbÞ ¼ �c0ðbÞ

64ð1� 2mbÞ�h3

3ð1� mbÞ2
; c6ðbÞ ¼ c0ðbÞ
where
�h ¼ h� h0
2

Employment in the constitutive equations of the face plates results in
z ¼ h0; srzðtÞ ¼ 0

z ¼ �h0; srzðbÞ ¼ 0

r ¼ 1;Z h

h0

srz dzþ
Z �h0

�h
srz dz ¼

8

3
ðh� h0Þ3

c0ðtÞEt

1� mt

�
þ c0ðbÞEb

1� mb

�
þ 2c2ðtÞ
��

þ c3ðtÞ
�
Et þ 2c2ðbÞ

�
þ c3ðbÞ

�
Eb

�
ðh� h0Þ
Since the constants of the top and the bottom face plates are linear functions of q2, q0 � q1, respectively, the
displacement wi at the center can be expressed in a simple form as
wt ¼ Q2 � q2; wb ¼ Q1 � ðq0 � q1Þ
Fulfillment the core plate of the boundary and interfacial continuity conditions, the constants of the core
can be obtained
c0ðcÞ ¼
3ð1� mcÞðq1 � q2Þ

128Ech30
;

c2ðcÞ ¼
ð5þ v2cÞh0ðq2 � q1Þ þ 8Ecð1� vcÞðQ2q2 þ Q1q0 � Q1q1Þ

32h20vcEc

c3ðcÞ ¼
ð5� 12vc þ v2cÞh0ðq1 � q2Þ � 8Ecð1� vcÞðQ2q2 þ Q1q0 � Q1q1Þ

16h20vcEc

cc04 ¼ �ðQ2q2 � Q1q0 þ Q1q1ÞEcð1� vcÞ þ h0ðq1 þ q2Þð1� 2vcÞ
4h0Ecvc

c5ðcÞ ¼
Q2q2 � Q1q0 þ Q1q1

2h0
c6ðcÞ ¼ �c0ðcÞ � c2ðcÞ
Further
c2ðcÞ ¼ �2c0ðcÞ ð6Þ
From the constitutive relations, we get
r ¼ 1;

Z h0

�h0

srz dz ¼
8

3
h30

c0ðcÞEc

1� mc
þ ð2c2ðcÞ þ c3ðcÞÞEch0
It is easy to see that ciðcÞ and as r ¼ 1,
R h
h0

srz dz,
R�h0
�h srz dz,

R h0
�h0

srz dz are linear functions of q0, q1, q2, so
simple forms can be got
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r ¼ 1;

Z h

�h
srz dz ¼ A1q0 þ A2q1 þ A3q2; ð7Þ

c2ðcÞ þ 2c0ðcÞ ¼ B1q0 þ B2q1 þ B3q2 ð8Þ
Substituting Eqs. (7) and (8) into the equations of boundary conditions and Eq. (6), we have
q1 ¼
2B1A3 � ð2A1 þ 1ÞB3

2ðB3A2 � A3B2Þ
q0

q2 ¼
2B1A2 � ð2A1 þ 1ÞB2

2ðB2A3 � A2B3Þ
q0
When the sandwich plate is symmetrical construction with respect to the mid-plane, q0 � q1 þ q2.

2.3. Three-dimensional analytical formulation for multilayered axially symmetrical isotropic circular plates

As shown in Fig. 3, the laminate is axially symmetrical plate under uniform transverse load with

ð2N þ 1Þ layers, total thickness 2H . The ith layer (i ¼ 0; 1; 2; . . . ; n) is made of material with Young’s

moduli Ei, Poison’s ratio mi and thickness 2Hi. The mid-plane of the 0th layer coincides with the global mid-

surface. Ui, Vi and Wi respectively stand for the displacements in the radial, circumferential, and axial

directions. The same non-dimensional parameters as above are introduced.

While neglecting the gravity, the three-dimension equations of equilibrium, geometric equations and
stresses-strains relations are similar to the ones for the axially symmetrical homogeneous isotropic circular

plate, then, for each layer, the displacement solutions are the similar to Eq. (5), just replacing the �z with z.
Then the boundary conditions are
z ¼ h; srzðNÞ ¼ 0; rzðNÞ ¼ 0

z ¼ �h; srzð�NÞ ¼ 0; rzð�NÞ ¼ �q0
r ¼ 0; ui ¼ wi;r ¼ 0

r ¼ 1;

Z h

�h
srzðiÞ dz ¼ � q0

2

z ¼ 0; r ¼ 1; ui ¼ wi ¼ wi;r ¼ 0
and the interfacial continuity conditions
z ¼ �h0 þ
Xi

m¼0

2hm;
rzðiÞ ¼ rzðiþ1Þ;srzðiÞ ¼ srzðiþ1Þ
ui ¼ uðiþ1Þ;wi ¼ wðiþ1Þ




-i

0

0

i

0

i

z

θ x x
0 0

II

q

Fig. 3. Geometry of a laminate under uniform transverse load.
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From the continuity conditions of the displacements, it is easy to see that all of the constants c0ðiÞ through
the thickness are the same one. Now take
c0ðiÞ ¼ c0
From the boundary conditions we have
c4ð0Þ ¼ 0; c2ð0Þ ¼ �2c0; c6ð0Þ ¼ c0
To satisfy the continuity of the displacement w at layer interfaces, we must have
c2ðiÞ ¼ c2ð�iÞ ¼ �2c0 � 8c0
Xi

k¼1

vk
1� vk

�
� vk�1

1� vk�1

� 
� h0 þ

Xk�1

m¼0

2hm

!2
Vanishing of the transverse shear stresses on the top and bottom and fulfilling of the continuity conditions

result in
c3ðNÞ ¼ � 32c0
1� mN

h2 � 2c2ðNÞ

c3ðiÞ ¼ c3ð�iÞ

¼ 32c0Eiþ1

Ei

1

1� miþ1

h

 0
@ �

Xiþ1

m¼N

2hm

!2

þ 2c2ðiþ1Þ þ c3ðiþ1Þ

1
A� 32c0

1� mi
h

 
�
Xiþ1

m¼N

2hm

!2

� 2c2ðiÞ
To satisfy the continuity of the displacements at layer interfaces and the boundary conditions of the stress

rz, we have
c4ðiÞ ¼ �c4ð�iÞ

¼
Xi�1

k¼0

16

3
c0

 0
@ � h0 þ

Xk
m¼0

2hm

!2

2� mk
1� mk

�
� 2� mkþ1

1� mkþ1

�
þ c3ðkÞ
�

� c3ðkþ1Þ
� 

� h0 þ
Xk
m¼0

2hm

!1A

c5ðNÞ ¼
1� 2mN
1� mN

32h3c0
3ð1� mNÞ

�
þ c3ðNÞhþ 2c2ðNÞh�

2mN
1� 2mN

c4ðNÞ

�

c5ðiÞ ¼
1� 2mi
1� mi

Eiþ1

Ei

0
@

0
@ � 32

3ð1� miþ1Þ
c0 h

 
�
Xiþ1

m¼N

2hm

!3

� ðc3ðiþ1Þ þ 2c2ðiþ1ÞÞ h

 
�
Xiþ1

m¼N

2hm

!

þ 2miþ1

1� 2miþ1

c4ðiþ1Þ þ
1� miþ1

1� 2miþ1

c5ðiþ1Þ

1
Aþ 32

3ð1� miÞ
c0 h

 
�
Xiþ1

m¼N

2hm

!3

þ ðc3ðiÞ þ 2c2ðiÞÞ h

 
�
Xiþ1

m¼N

2hm

!
� 2mi
1� 2mi

c4ðiÞ

1
A

c5ð�NÞ ¼
1� 2mN
1� mN

32h3c0
3ð1� mN Þ

�
þ c3ð�NÞhþ 2c2ð�NÞh�

2mN
1� 2mN

c4ð�NÞ �
q0
EN

�
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As a result of simplicity, c5ðiÞ and c5ð�NÞ can be expressed in a compact form as
c5ðiÞ ¼ CðiÞc0

c5ð�NÞ ¼ Dc0 �
1� 2mN
1� mN

q0
EN
then
c0 ¼
1� 2mN
1� mN

q0
EN

1

D� Cð�NÞ
To satisfy the continuity of the displacement w at layer interfaces, we have also
c6ðiÞ ¼
8

3
c0

Xi�1

m¼0

2hm

 
� h0

!4

1þ mi
1� mi

�
� 1þ mi�1

1� mi�1

�
þ

Xi�1

m¼0

2hm

 
� h0

!2

1

2ð1� miÞ
c3ðiÞ

�
� 1

2ð1� mi�1Þ
c3ði�1Þ

þ 1� 2mi
1� mi

c2ðiÞ �
1� 2mi�1

1� mi�1

c2ði�1Þ

�
þ

Xi�1

m¼0

2hm

 
� h0

!
ðc5ði�1Þ � c5ðiÞÞ þ c6ði�1Þ
Now all of the boundary and continuity conditions are satisfied. For laminate with layers made of same

material, the displacement solutions (5) are of identical formula with Eq. (3) for the axially symmetrical

homogeneous isotropic circular plate.
3. ‘‘pb-2 Ritz’’ theory

The models of ‘‘pb-2 Ritz’’ theory found in publications are unfit for three-dimensional static analysis

for thick circular plates, a new ‘‘pb-2 Ritz’’ model for thick circular plates is set up.

3.1. Single layer plates

Based on the ‘‘pb-2 Ritz’’ theory by Liew et al. (1998), the field of displacement is expressed as
u ¼ u0 þ z#� 4z3

3h2
ow0

or

�
þ #

�

w ¼ w0
where
u0 ¼
Xm
i¼0

ciuð1� r2Þr2iþ1

# ¼
Xm
i¼0

ci#ð1� r2Þr2iþ1

w0 ¼
Xm
i¼0

ciwð1� r2Þ2r2i
It is easy to see that the clamped boundary conditions r ¼ 1, u ¼ w ¼ 0 have been satisfied.
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The strain energy due to bending can be expressed as
Table

The m

Sam

I

II
U ¼ 1

2

Z
V
fegTDfegdV
The potential energy of the load distributed over the plate surface is
W ¼
Z
S
wq0 dS
In accordance with Ritz method the total energy function can be obtained
P ¼ U � W
and the coefficients cia are determined by minimizing the total energy function, i.e.
oP
ocia

¼ 0; a ¼ u; #;w
3.2. Laminates

Based on the ‘‘pb-2 Ritz’’ theory by Liew (1994), the transverse deflection is expressed as
w ¼
Xm
i¼0

ciwð1� r2Þ2r2i
It is obvious that the clamped boundary conditions r ¼ 1; u ¼ w ¼ 0 have been satisfied.

Following the step in Section 3.1, the coefficients ciw can be obtained. Wherein the stiffness coefficients D
is determined as
D ¼ 1

3

X2Nþ1

k

Dk

 0@ � h0 þ
Xk
m¼0

2hm

!3

�
 

� h0 þ
Xk�1

m¼0

2hm

!3
1
A

where Dk is the matrix of bending stiffness coefficients of the kth ply.
4. Experimental models and device

To verify the analysis, experiment is conducted for sandwich plates under uniform transverse load. The

strains on both the surfaces and the displacement w at the top surface are tested. The models with the main

dimensions presented in Table 1 are shown in Fig. 4. The faceplates are made of the same composite

material with E ¼ 5:6 GPa and m ¼ 0:15. The core is made of rubber with m ¼ 0:47 and Young’s modulus E
expressed as
sample I : E ¼ ð2:90þ 25:00q0Þ MPa; sample II : E ¼ ð6:40þ 30:00q0Þ MPa
Twelve bidirectional strain gauges are glued to the top and bottom surfaces, as indicated in Fig. 5.
1

ain dimensions of samples

ple no. Structure R (mm) 2H (mm) 2H0 (mm)

Sandwich 100 45 41

100 55 41



a

Fig. 4. Geometry of a sandwich plate.

Fig. 5. The location of strain gauges (mm).
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The experimental device comprises two parts: supporting structure and pressurizer, as shown in Fig. 6.

The supporting structure consists of platen, sealer and pedestal. When one sample is placed between the

annular packing and the annular platen, the annular platen, sample and annular packing are pressed

against the pedestal by the bolts. Out-of-plane uniform pressure is supplied by the pressurizer.
7

6

5

4

3

2

1
8

R

1. 
2. 
3. 
4. 
5. 
6
7. 
8. 

Fig. 6. Experimental device.
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5. Calculation and analysis

5.1. Homogeneous plates

Tables 2 and 3 present the calculating results of the present theory (TH), ‘‘pb-2 Ritz’’, Ansys (ANS) and

Timoshenko and Goodier (1970) three-dimensional theory (TG) for a homogeneous plate with radial

a ¼ 100 mm, thickness 2H ¼ 20 mm, and the same material as the faceplates of the samples, under uniform

transverse load q0 ¼ 0:12 MPa. The element Solid45 is employed in the Ansys model.

From Table 2, it can be observed that the results of the present theory, ‘‘pb-2 Ritz’’ and Ansys are very

close to each other except near the boundary, however, ‘‘pb-2 Ritz’’ theory cannot provide values of the

transverse normal strain. From Table 3, it can be shown that the results of the in-plane stress rr of the

present theory are closer to Ansys than ‘‘pb-2 Ritz’’. It is further shown that there exists obvious difference
between the results of Timonshenko-Goodier theory (1970) and of the present theory, ‘‘pb-2 Ritz’’ and

Ansys.

Numerical data given in Table 4 are the maximum deflections w of three homogeneous plates with the

same material as mentioned above and different ratios of radius to thickness by the present theory, Ansys

and ‘‘pb-2 Ritz’’ theory. It shows that the results of the present theory, Ansys and ‘‘pb-2 Ritz’’ theory are
Table 2

Single layer, z ¼ h, distributions of the strains and deflection w

R (mm) 0 25 50 75 100

er
TH 183 145 36 )149 )405
ANS 170 131 34 )104 )252
Pb-2 Ritz 203 166 50 )137 )548

eh

TH 183 170 134 72 12

ANS 170 152 120 58 8

Pb-2 Ritz 203 190 153 90 0

ez
TH )44 )35 )9 33 94

ANS )43 )31 )8 30 78

Pb-2 Ritz – – – – –

w
 102 (mm)

TH 5.18 4.28 2.76 0.99 0.00

ANS 5.02 4.43 2.91 1.11 0

Pb-2-Ritz 5.81 5.14 3.40 1.28 0

Table 3

Single layer, z ¼ h, distribution of the stress

R (mm) 0 20 40 60 80 100

rr (MPa)

TH 1.21 1.07 0.64 )0.07 )1.06 )2.33
ANS 1.23 0.99 0.65 0.03 )0.83 )2.35
Pb-2 Ritz 1.41 1.26 0.82 0.03 )1.02 )3.24
TG )0.01 )0.15 )0.58 )1.29 )2.28 )3.56



Table 5

Sandwich plate the experimental, present theoretical and Ansys’s results of strains

q0 (MPa) 0.02 0.12

R (mm) 0 15 30 60 85 95 0 15 30 60 85 95

Sample I

er
z ¼ h

EX 335 351 289 20 )488 )617 1431 1633 1609 728 )1920 )2796
TH 359 327 251 )29 )429 )623 1375 1250 962 )110 )1637 )2381

Z ¼ �h
EX )299 )300 )246 )67 200 693 )816 )824 )744 )100 1181 3305

TH )367 )334 )257 29 437 637 )1402 )1275 )981 113 1671 2428

eh

z ¼ h
EX 319 299 279 209 75 )294 1412 1394 1283 926 278 )1376
TH 359 346 323 230 97 32 1375 1333 1287 879 371 123

Z ¼ �h
EX )338 )320 )280 )214 )49 )24 )925 )922 )927 )950 )394 )224
TH )367 )356 )330 )235 )99 )33 )1402 )1360 )1261 )897 )388 )124

Sample II

er
z ¼ h
EX 108 98 68 7 )75 )105 585 534 374 38 )395 )571
TH 107 97 74 )9 )129 )187 614 557 428 )54 )721 )1095
ANS 76 64 45 )10 )75 )106 438 376 182 )54 )452 )642
Z ¼ �h

EX )119 )120 )74 )9 106 164 )682 )672 )407 )21 637 972

TH )120 )102 )83 10 144 210 )669 )608 )466 59 807 1172

ANS )70 )82 )75 )3 118 182 )346 )436 )412 )26 642 998

eh

z ¼ h
EX 102 98 88 64 33 )30 553 335 479 350 172 )166
TH 107 103 96 68 27 10 614 594 552 391 164 48

ANS 70 68 63 44 18 6 408 399 371 260 110 36

Z ¼ �h
EX )113 )115 )107 )80 )41 )13 )627 )651 )620 )476 )242 )65
TH )119 )116 )107 )76 )32 )10 )669 )648 )601 )426 )177 )55
ANS )77 )80 )79 )61 )30 )13 )398 )422 )418 )4326 )163 )64

Table 4

Single layer, z ¼ h, R ¼ 0, the deflection w

a=H 40 20 10 7

w
 102 (mm)

TH 331.8 41.47 5.18 1.78

ANS 310.8 37.16 5.02 1.75

Pb-2 Ritz 328.2 42.12 5.81 2.24
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very close and when the ratio of radius to thickness decreases to 10, the results of the present theory is closer
to Ansys.

Hence, it can be concluded that the theory of homogeneous plates is reliable and new.
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5.2. Sandwich plates

Numerical data given in Tables 5 and 6 are the results of the experiment (EX), the present sandwich

theory and Ansys for the sandwich plates shown in Table 1.Taking into account the ratio of the core
thickness to the total thickness, Shell91 and Solid45 are employed for sample I and sample II respectively.
Table 6

Sandwich plate z ¼ h the experimental, present theoretical and Ansys’s results of displacement w

q0 (MPa) 0.02 0.12

R (mm) 16 25 40 55 60 75 80 95 16 25 40 55 60 75 80 95

w
 102 (mm)

Sample I

EX 68 – 56 – 34 – 9 2 266 – 217 – 141 – 40 2

TH 84 73 36 9 2 322 242 141 44 11

ANS 103 89 68 38 10 358 308 235 132 35

Sample II

EX – 6.8 5.8 4.3 – 1.8 – 0.3 – 38.1 32.0 23.2 – 12.0 – 4.0

TH 6.6 5.4 3.5 1.5 0.3 38.1 31.0 21.1 8.7 1.3

NS 4.8 3.8 2.6 1.0 0.1 28.2 22.1 15.3 5.0 0.3

Table 7

Sample II R ¼ 0 q0 ¼ 0:02 MPa the present theoretical and Ansys’s results of stresses

Z (mm) )27.5 )22 )20.5 )11 )5.5 0 5.5 11 20.5 22 27.5

rr (MPa)

TH )0.794 0.448 0.790 )0.011 )0.010 )0.008 )0.007 )0.005 )0.711 )0.403 0.705

ANS )0.507 0.332 0.314 )0.010 )0.009 )0.008 )0.008 )0.008 )0.233 )0.264 0.440

rh (MPa)

TH )0.794 0.448 0.790 )0.011 )0.010 )0.008 )0.007 )0.005 )0.711 )0.403 0.705

ANS )0.507 0.332 0.314 )0.010 )0.009 )0.008 )0.008 )0.008 )0.233 )0.264 0.440

rz (MPa)

TH )0.020 )0.012 )0.011 )0.011 )0.010 )0.010 )0.009 )0.008 )0.008 )0.007 0.000

ANS )0.017 )0.020 )0.016 )0.014 )0.014 )0.013 )0.012 )0.011 )0.009 )0.003 )0.003

Table 8

Sandwich plate z ¼ h the present theoretical and Ansys’s results of displacement w

R (mm) 0 20 40 60 80 100

w
 102 (mm)

a ¼ 100

TH 20.2 18.7 14.3 8.30 2.60 0.00

ANS 18.0 17.3 15.0 11.4 6.32 0.00

a ¼ 216

TH 43.0 39.6 30.4 17.6 5.58 0.00

ANS 38.1 36.5 31.9 24.2 13.5 0.00

a ¼ 1080

TH 189 175 134 78 25 0

ANS 187 180 157 119 67.3 0
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From the data in Tables 5 and 6, it can be seen that the results of the present theory are closer to the

experiment than Ansys. The displacement values of the present theory are between Ansys and experiment.

For the distribution of the displacement and the strains, the present theory are in agreement with the

experiment: the maximum of normal strain ex exists on the boundary, of normal strain ey exists at the center
of the circular plate; the displacement distributions in the r-direction are all in cosine type but Shell91, their

maximums exist at the center.

The data given in Table 7 are the present theoretical, Ansys’s reaults of stresses. It is clear that the

stresses in the core are almost zero due to its moduli very small in comparison with the faceplates. Similar to

the difference between exact solutions and a f3; 2g-order theory by Barut et al. (2001), difference between

the results of the present theory and Ansys exists.

The deflection w distributions of the theory are compared with Ansys for sandwich plates with the same

structure as sample I and different a, the ratio of Young’s modulus of the faceplates and the core, as shown
Table 9

Laminate z ¼ �h the present theoretical and Ansys’s results of the strains and deflection w ‘‘pb)2 Ritz’’ theoretical results of the

deflection w

R (mm) 0 20 40 60 80 100

er
TH )174 )153 )87.4 )21.5 174 370

ANS )168 )140 )84.4 12.6 146 330

eh

TH )174 )167 )146 )109 )58.3 6.94

ANS )154 )148 )143 )98.7 )63.1 )3.76

ez
TH 51.1 46.0 30.6 4.96 )30.9 )77.0
ANS 47.3 41.4 33.9 3.00 )22.6 )22.5

w
 102 (mm)

TH 6.03 5.56 4.26 2.48 0.80 0.03

ANS 6.29 5.83 4.52 2.71 0.94 0.00

Pb-2 Ritz 6.04 5.57 4.27 2.48 0.78 0.00

Table 10

Laminate R ¼ 50 mm the present theoretical and Ansys’s results of the strains

z (mm) )7.5 )4.5 )1.5 1.5 4.5 7.5

er
TH )47.5 )27.3 )8.83 8.82 27.3 47.5

ANS )48.3 )28.7 )9.06 8.93 29.2 45.0

eh

TH )132 )78.1 )25.8 25.8 78.1 132

ANS )118 )73.0 )23.3 27.5 75.5 116

ez
TH 21.2 9.16 )0.1 )11.0 )19.7 )31.7
ANS 21.5 9.68 )1.35 )11.0 )20.1 )29.9

crz
TH 0.00 )39.6 )64.3 )64.9 )39.6 0.00

ANS )17.6 )37.5 )59.6 )58.8 )38.4 )19.1



Table 11

Laminate z ¼ h, q0 ¼ 0:12 MPa the deflections w

R (mm) 0 20 40 60 80 100

w
 102 (mm)

a ¼ 1:3

TH 6.0 5.5 4.2 2.5 0.8 0.0

ANS 6.2 5.8 4.5 2.7 0.9 0.0

‘‘pb)2 Ritz’’ 6.0 5.6 4.3 2.5 0.8 0

a ¼ 2:0

TH 6.1 5.6 4.3 2.5 0.8 0.0

ANS 6.5 6.0 4.7 2.8 1.0 0.0

‘‘pb-2 Ritz’’ 6.1 5.6 4.2 2.5 0.8 0.0

a ¼ 8:0

TH 6.2 5.7 4.4 2.5 0.8 0.0

ANS 8.1 7.6 6.0 3.8 1.4 0.0

‘‘pb-2 Ritz’’ 6.2 5.7 4.4 2.5 0.8 0.0
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in Table 8. It is clear that the maximums of deflection w of the theory coincides with Ansys nicely, but with
the increasing of a, the difference near the boundary increases. The w of Ansys are in parabola type, but of

the present theory in cosine type. It is evident that this reflects a discrepancy between three-dimensional

analysis and two-dimensional analysis. Hence, we can arrive at a conclusion that the trend is reasonable.
5.3. Laminates

The laminate under uniform transverse load q0 ¼ 0:12 MPa consists of three layers of the same thickness

2Hi ¼ 5 mm and radius a ¼ 100 mm including two faceplates with E ¼ 1:08
 104 MPa, v ¼ 0:15 and a
middle layer with E ¼ 1:00
 104 MPa, v ¼ 0:17. The results of the present theory, ‘‘pb-2 Ritz’’ and Ansys

are shown in Tables 9 and 10. Solid45 element of Ansys is used for calculation. From these tables, it is clear

that the present theory, ‘‘pb-2 Ritz’’ and Ansys are close to each other.

For different ratio of modulus of the faceplates and the middle, The deflection w of the present theory,

Ansys and ‘‘pb-2 Ritz’’ theory for laminates with the total thickness 2H ¼ 20 mm, radius R ¼ 100 mm and

three plies of same thickness are shown in Table 11. Solid45 element is used for Ansys calculation.

From Table 11, it can be seen that with the ratio increasing the discrepancy between the theories and

Ansys increases, but the present theory and ‘‘pb-2 Ritz’’ theory are in agreement with each other.
6. Conclusions

The paper presents specifically the solutions for axially symmetrical homogeneous isotropic circular

plates, laminate plates and sandwich plates under transverse load. The solutions including all of normal

stresses and shear stresses satisfy all the equations of equilibrium, the mid-plane clamped boundary con-

ditions and the interfacial continuity conditions through-thickness. Comparing with experimental, Ansys’s

and ‘‘pb-2 Ritz’’ theoretical results, it can be concluded as follows:

1. The solution for homogeneous plates are different from the solution by Timoshenko and Goodier (1970),

it is a new three-dimensional theoretical solution.



3706 J.Z. Luo et al. / International Journal of Solids and Structures 41 (2004) 3689–3706
2. Within a scope of ratio of radius to thickness, the clamped boundary conditions can be accurately

simplified as the mid-plane clamped boundary conditions, the present solution for single layer plate is

precise solution for axially symmetrical homogeneous isotropic circular plates under uniform transverse

load with clamped boundary.
3. The present sandwich theory is in agreement with the experiment, so it can be used for estimating the

distribution of strains and stresses of the faceplate.

4. The present laminate theory agrees with ‘‘pb-2 Ritz’’ theory, and within a scope of ratio of radius to

thickness, is in agreement with Ansys, thus the clamped boundary conditions can be accurately simplified

as the mid-plane clamped boundary conditions.
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